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SUMMARY

The procedures presented in this work lead todbatification of reasons for the poor
fit of a mathematical model. Investigation of vest@f influential observations in a
linear regression model leads to the identificabbsystems of observations regarded as
influential. Particularly interesting are those whicontain cases which were previously
not regarded as influential in the analysis oflarfwdel or 1-cut model.
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1. Introduction

In the analysis of a linear regression model by ldast-squares method, an
important issue is the qualitative evaluation oé ttmodel. This refers to
estimators of the structural parameters and randomponent, as well as to
various test statistics. These may depend direatlyone or more vector
observations of the dependent variable and thesyst independent variables.
In this work we present concepts relating tomaout linear regression
model, as well as a study of a distinguished systdhm observations
influencing the evaluation of the regression modéke concept of a vector of
influential observations is defined, and influehtdoservations in am-cut
model are discussed, along with the phenomenon askimg. Particular
attention is paid to Cook's distance measure agitarion for diagnostic
analysis of the influence of vector observationghm quality of statistics used
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to evaluate the regression model. The proceduredigzovering influential
observations is illustrated with a numerical exampl

2. Material and methods

2.1. Concepts and denotations in am-cut linear regression model

Let there be given a linear regression model
y=Xp+e

wherey : n x 1 is a vector of observations of the dependenall, X : n x p

a matrix of observations gb - 1 independent variables whose first column
corresponds to the vector of on@s,px1 a vector of structural parameters, and
e :nx 1 a vector of random error&(e) =0, D(e) = ol ).

Let fizGX'y be an estimator of the vector of structural patense
obtained by the least-squares method, wi@re(X'X)™, H=XGX : nx nis
an orthogonal projection matrix, ar@ =y (I —H)y(n— p is)an estimator of
the parametetU2 of the variance of the components of the vectoraoidom
errors.

In order to investigate whether a systemrmodbservations is influential, we
introduce the symbdlto denote a subset of numbers from the set @,..., 11,
Xay:(n - m x pis anm-cut matrix, lacking the subsetf observations from
matrix X, X, : mx pis the matrix of the distinguished systenmobbservations
from matrix X, X=[X'(,) X, ] is a block division of matrixX into the
indicated submatricesy =]y, Y, ]is a division of vectoy into subvectors
Yoyi(n - m x 1 and y,: mx 1 according to the division of matriX,

{ y(l),X(,)ﬁ(,),azl } is an m-cut linear regression model, wheg, does not
denote a cut of the vector of structural parametens emphasizes that the
p-dimensional vector of parametefs is estimated from ammcut model,
ﬁ(l) =f$—GX, (1-H,)"r,,: px 1is a least-squares estimator of vetdrom
the m-cut model, whereH, =X,GX, :mxm and r, =y, - X,p (Budka and
Wagner, 2007).
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2.2. Determination of vectors of influential obserations

The least-squares estimators of the vector of Enmlcparametersﬁ and the
variance of random error§?, or functions of them, may reveal unfavourable
properties of the adopted model, whereby it is |yofited to the observations.
This will be expressed, for example, in high valeéshe standard deviations
which are used to build various test statisticgenfy hypotheses in parametric
statistical inference, and also to construct canrfa® intervals (see e.g. Draper
and Smith 1973, Oktaba, 1986, Ostasiewicz, 1999)eBhoving any influential
or divergent observations, we improve the fit of thodel to the observations.
However rejection of observations cannot be donehagically — it requires
critical consideration of the structure of the nuiced data in terms of the
occurrence of angtypical observationswhich may appear in the direction of
the X axis (among the components of the row vectors afrimnX) or in the
direction of theY axis (among the components of the observable vgkto

In both situations the problem relates to a singlemultiple vectors of
observations. In linear regression analysis tliadésis known asccurrence of
influential observationssince these have a direct influence on the aedlys
numerical characteristics of the regression model.

To define formally the vector of influential obsations, we denote
a sample ofn (p+1) - dimensional observations in the form of a seme
of row vectors of matrix X and components of vectory:
Z = (X,Y) = (%0, Y2 (2, Yo )oK Vo)) = (06, ¥ )1 121, 2, ooy ) = RPY,
where (x;,y;) ORP*"
Definition : In a linear regression model, the vector of observa
tions((X;,, ¥;,)---(X; ,¥; ))'in a sampleP,”™, indexed by a distinguished set of
m indicators {i;,i,,....i } O {12,...,n}, is called a vector of influential
observations if its components significantly chatige values of the analysed
numerical characteristics in that model.

The definition given implies the existence of at smai[m(n—m)!]™
influential vectors, and this is also the numbermstut regression models. For
each of them one can determine a least-squarenagsti for the vector of
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parameters and variance of errors. This procedurefficient in practice when
n and m are large. Moreover the estimators obtasmedot always acceptable
to the researcher, which fact may indicate the weoge of influential
observations. For such a situation a principle efjuential procedure is
proposed, which begins with analysis of 1-cut lmegression models.

2.3. Influential observations in anm-cut model

We consider the casa = 1. Characteristics of such a model are discussed in,
for example, (Besley et al., 1980), (Comtkd Weisberg, 1982), (Chatterjee and
Hadi, 1988), (Ostasiewicz, 1999), and (Budka andjvéa2007).

In a 1-cut regression model diagnostic analystaisied out on the effect of
vector observations on the quality of the stastmf evaluation of the
regression model. The criterion adopted for thialysis is the Cook distance,
as a measure of influence, which can be expresste iform:

D = (ﬁ_ﬁ(i))lxlx(ﬁ_ﬁ(i)) - (9‘90))‘(9_9(0) - tiz DW,
' ps’ ps’ p

(1)

i=1,2,....,n,wheres® is an estimator of the paramet&f

ﬁ(i) :ﬁ - 1—rihii Gx;
an estimator of the vector of structural parametees1-cut modely; is thei-th
component of the vector of residuats= (I —H)y, h; — the i-th diagonal
element of matrixH, y =X|§ the estimated vectoy from the full model,
9(i) = Xﬁ(i) the estimated vectory from the 1-cut model,
t? =r?s?(1-h ) "the square of theth internal studentized residual, and the
sensitivity vectorw: =h. (L-h.)*the ratio of the variance of tigh estimated
variable to the residual.

This measure makes it possible to distinguish sesy®f single vectors of
influential observations. The threshold value fetedmination of influential
observations based on the Cook distance is takbe #(-p-1) (Chatterjee and
Hadi, 1988), (Belsley et el., 1980), (Fox, 2005).
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We find that this system contaimg observations. This serves as a starting
point for determining 2-dimensional, and from th&dimensional and so on
up tomdimensional, vectors of influential observations.

We consider a case with> 1. This is not an ordinary generalization of the
1-cut model. This is because of the phenomenomagkingof observations,
when the dataset may contain small subsets whiehjantly influential,
although each observation considered separatelgtisifluential (observations
C and D). The reverse may also be the case: olisgivaA and B are
individually influential, but are not so when caheied jointly (Figure 1).

27
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e B
15 : : : ‘
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Figure 1. The effect of masking of observations

A symptom of the masking effect may be that after separation of one or
more influential observations, other observatioras rappear as exceptionally
influential, although this was not visible previgusHence the significance of
particular observations may not be revealed whbaratbservations have been
previously separated off.

The problem of masking observations has been cereidoy many authors,
including (Cook and Weisberdl980), (Gray and Ling1984), (Atkinson,
1985), (Rousseeuw and Lercdy987), (Chatterjee and Hadi, 1988), (Lawrance,
1995), and (Pena and Yoh&f95).

In investigating a system of (p+1)-dimensional row vectors of influential
observations, namely a certaimx(p+1)-dimensional submatrix separated off
from the matrix X, y), attention must be given to the problem — which
frequently does not have a definitive answer — @ivhio establish the value
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m=2, 3, ... Should one consider all systems of coatmns ofm observations
from ann-element set?

It should be noted that the main purpose of ingasitig distinguished
submatrices is to find systems of observations #éinatconsidered influential.
Important are those which contain cases previongtyidentified as influential
in analysis of the 1-cut model. The reverse situatnay occur, where a given
system of submatrices was identified as influentmit on addition of new
observations to those submatrices it transpiresttteanew system of enlarged
submatrices is not longer considered influential.

The measure of the influence of the Cook distadgdar anm-cut model
takes the form:

_ (ﬁu) _ﬁ)‘x‘x(ﬁu) _ﬁ) _ 1
= 5 = r
ps ps’

Dl '(I_H|)_1H|(|_H|)_lr|1(2)

The symboll denotesm numbers of distinguished vector observations,
namely the investigated submatrix of influentiabetvations.

Measure (2) form=2 and a distinguished paidl ={i, |} such that
1<i< j<nisexpressed by the formula:

D, =D;; =B +B, +Bs, (3

Where

[

i)
B, =(D, +Dj){1+EJ ,

_N

2 2s’d?

nr, hj
2s’d?

{riz(z_hjj)+rj2(2_hi)}’ B; = {1+hj2_hihjj}1
hij is the (, j)-th element of matri, and d; = @1-h;)1-h;) —hjz (Gray and
Ling, 1984).

The formula given makes possible the following iptetation of the
distinguished pairi(j) of vector observations:
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if by >0, if hy <0,
Bg>O,Whenrirj >0 Bg<O,Whenrirj >0
(jointly influential); (not influential);
B; <0, whenrirj <0 Bs>0, whenr,r; <0.
(not influential); (jointly influential).

Next we can consider, for pairs of observationg, @mplification effect
when one or both statistics,; are less than the statistig; [, theweakening
effect when one or both Cook statistics for theufirmnodels are greater than the
Cook statistics for the 2-cut model, tieenservingeffect when both Cook
statistics in the 1-cut models are almost equéth¢oCook statistic for the 2-cut
model, and thaattracting effect when one of the Cook statistics for a 1-cut
model with large values, and the other with smalkdues, lead to large values
of the Cook statistic for the 2-cut model.

In determining the vector of influential observaso attention must be paid
to their character depending on the values of thgashal elements of matriA.
These elements are expressed by vector valuegimgfdp the independent
variables. This makes it possible to investigate #typicality of vectors,
expressed by their distance from a regression erluginderstood as a
homogeneous set corresponding to a characterfdtie gegression relation). In
the case of a regression model with one independeidble, this corresponds
to a configuration of points on a plane distribuéedund a certain straight line,
whereas in the case of a multiple regression medeh a configuration is a
generalized ellipsoid with a hyperplane interseagtin
Definition : Case observations, namely row vectors of mafroorresponding
to diagonal values of matrid are called leverage points.

The values of diagonal elements are containedemntiervak1/n, ). Hence
taking thea priori set threshold valul, for diagonal elements of the mat
one can distinguish among them thigh-leverage pointsvhich exceed that
value. It is these points that will chiefly interass further, in terms of their
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influence on the estimated linear regression mddeservations are considered
to be leverage points I, > (tr[H]/n). Whenh; = 05 we have a high-leverage
point. When 02<h; < 05we have medium influence (a medium leverage
value)(Belsley et al., 1980).

The considered matrixl and the matrixH™ are matrices of orthogonal
projection onto the space of columns of, respelgtithe system matrixX and
the extended system matriZ = [X, y]. The diagonal elements of matriA”
take account of the simultaneous influence of thkies of the independent
features and the dependent feature in the linegnession model. Hence the
leverage points of both matrices give slightly eliffig information about
particular observations. It can be shown that theedage valueélﬁ for the
extended matrix of the system are the sum of l@eraluesh;; and the ratio
of the square residualg® to the sum of square residuaBSE=Yr> The
residualsr; will be large for the divergent observations. Heerit cannot be
indicated directly which valuels; andr; have a direct influence on the values
h; . The following situations may occur here:

r2
i Large Small

h

Large (a) influential (b) possible influential

Small (c) possible influential (d) is not influgadt

Situation (a) indicates the occurrence of atypmagervations among the
dependent feature and several independent featiteations (b) and (c) may
lead to the inequalityy, >h,, wherehy, is a set threshold value (determined as
hy), and this will indicate an influential case. ltosild be noted that divergent
observations need not be influential, influentiddservations need not be
divergent, high-leverage points generally have bmesliduals, and influential
observations correspond to non-proportional fit. rébwer divergent
observations and high-leverage points need nomnfheential, and influential
observations are not necessarily high-leveragetpoin
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2.3. The principle of sequential separation of intlential observations

We give here a principle of sequential proceduremseparating off influential
observations in linear regression models. Lefl, 2, ..., i} be a set ofn

consecutive numbers corresponding to observations.
The sequential principle includes the followingpste
* identification of influential observations in a titanodel

a.

b.
c.

(&) — sequence of distinguished single influentiaeslations from the
set of all observations,

i=1,2, .., 6

L, — set ofg; indices for distinguished observations;

» identification of pairs of influential observatioimsa 2-cut model

a.
b.

c.
d.

(&, &) — sequence of investigated pairs, wheté,, i /L , andi # j,

in (i) for eacha there are identifiedmaj influential pairs, influential
0 =2, M, pairs are established inltota

(b, b) — selected influential pairs indexed by thelseaaf cardinalitya,,

Lo = {(Jui1),(J202)s1q,s1q,) —S€t Of New indices of distinguished
influential pairs,

* identification of triples of influential observatis in a 3-cumodel

a.
b. for each pairlg;, b) there are distinguishemf;, influential triples,

C. 1

d. (g, q(b’&)) O I3 — selected influential triples indexed by the ketof

e.

(b, b, a) — sequence of investigated triples, wheréL, k #i, j,
d;= > m,, influential triples aretelemined in total,

cardinalityqs,
Ls= {( j11i11k1)1(j21i21kz)’----’(j%aiq31kq3)}-

» the process can be continued for quadruples, quieguetc. of influential

observations.
In each situation when specifying pairs, triplesiadruples etc. it is
necessary to omit those which have already beentifidel at an earlier stage.
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3. Research problem

Thediscussed procedure for determining submatricésfloential observations

will be illustrated using data taken from a metdogical experiment. The
experiment was performed in 1975 in the UnitedeStainder the name FACE
(Florida Area Cumulus Experiment) (Woodley et dl977). It studied the
relations between a dependent varidbte Y — the logarithm of the value of

rainfall in the experimental area in a 6-hour im&after the first cloud seeding
— for each of selected days in the 80-day duratibrthe experiment, and

selected factors affecting the occurrence of rain:

A — binary feature (1 — introduced,-Onot introduced) for introduction of
volatile compound of silver iodide into clouds,

T — numbers of selected days in the period from 1&/669 (1 — 16/06, 2 —
17/06, ..., 92 — 15/09),

S-Ne- seeding capability adjustment — difference betwthe height (km)
of a rain cloud before and after seeding with siledide,

C —range echo — percentage coverage of the 30Gesquile experimental
area by clouds,

Ln_P - natural logarithm of value of total precipitation the experimental
area an hour before seeding’jni07],

E — qualitative feature — radar echo (1 — mobile,2ationary radar) (Cook
and Weisberg, 1980).

The data includen = 24 vector observations fop+1= 7 features.The

estimatedinear regression model and calculated statisticgittiple correlation

coefficient, adjusted multiple determination cogéint, standard deviation of

random error evaluation, Fisher-Snedecor teststatprobability of rejection
of zero hypothesis — took the form:

§ =12.898+ 0.726x, — 0.0154x, — 0.223, — 0.013, + 0.311x; + 0.627x,,
R=0717, D=342%, s=0769, F=2991 P, =0035
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The standard deviations of evaluations of struttperameters and the
probability of rejection of zero hypotheses conaggrstructural parameters are
recorded in Table 1.

Table 1.The standard deviations of evaluations of stru¢pmsameters ang j-value

i 0 1 2 3 4 5 6

p(g) 3392 0340 0008 0219 0028 0228  0.430
b, 0001 0047 0070 0323 0636 0190  0.164

The calculations show that:

» the multiple correlation coefficient is moderathigh (0.717),

» the standard error evaluation value is high (0.769)

* the estimated linear regression model is significkor the adopted
significance level of 0.05

» significance at level 0.05 was found only for feaetuA, while at a
significance level of 0.1 only the two features #dal can be considered
significant,

» features A, In_P and E have a positive influencéhendependent variable,
while the others have a negative influence,

» the residuals, in increasing order, together with observation numbers,
are given in Table 2.

* high absolute values of residuals are found foenlations 7 (-2.1808) and
15 (1.0642).

Table 2. The residuals together with the observation numbers

Obs. Res. Obs. Res. Obs. Res. Obs.Res. Obs. Res. Obs. Res.
7 -2.181 17 -0.408 23 -0.141 6 0.07116 0.274 9 0.726
24 -0.725 2 -0.404 19 -0.075 21 0.11720 0.283 8 0.803
5 -0.686 22 -0.213 12 -0.046 10 0.23614 0.306 13 0.876
3 -0.419 11 -0.200 18 0.023 4 0.2441 0472 15 1.064




94 A. Budka

Based on the descriptive analysis of continuousalibes (with particular
attention to the smallest and largest residuatsjitht set of potential influential
observations W£{1, 2, 3, 5, 6, 7, 11, 13, 15, 24} was identifiddongside the
given set W, we consider a new set of influential observatioesermined
using analysis of leverage points, namely the diajelements of matrixd.
Their values, in non-increasing order, are recordédble 3.

Table 3.The diagonal elements of mattik

No. Obs. h No. Obs. h No. Obs. h

1 2 0.852 9 7 0.327 17 21 0.199
2 6 0.596 10 20 0.322 18 22 0.199
3 3 0.438 11 23 0.258 19 9 0.179
4 24 0.418 12 4 0.241 20 8 0.165
5 17 0.359 13 10 0.228 21 19 0.165
6 1 0.348 14 13 0.223 22 14 0.140
7 18 0.337 15 15 0.218 23 12 0.129
8 5 0.334 16 11 0.207 24 16 0.117

Interpretation of leverage points:

» leverage values are contained in the intef@al17, 0.852

» the highest leverage value is found for case 5@),8

» high-leverage points exceeding the threshold val@62 (=7/24) determine

a new set of influential observationsy¥/ 1, 2, 3,5, 6, 7, 17, 18, 20, 24}.

On combining the two sets we obtain the seb WW,0W,={1, 2, 3, 5, 6,
7,11, 13, 15, 17, 18, 20, 24}. The obtained seblifervations is reduced by
analysing the matrixH" . The diagonal points of that matrix are given in
Table 4.

Based on the values of the diagonal elements abxriat (hy = 033) and
the differencesHl — H* | the set W, was reduced to W= {1, 2, 3, 5, 6, 7, 15,
17, 18, 20, 24}. From the preliminary analysis ldservations were finally
distinguished.

Reduction of the given set MWvas performed by diagnostic analysis of 1-
cut models. Detailed analyses are contained in KBug005). For our further
needs, we give the calculated values of the Caatlsst.



Investigation of vectors of influential observatson 95

Table 4.The diagonal elements of matrkt’

No. [ hi No. [ h; No. i h;

1 2 0.853 9 7 0.327 17 21 0.200
2 6 0.596 10 20 0.322 18 22 0.199
3 3 0.438 11 23 0.258 19 9 0.179
4 24 0.418 12 4 0.241 20 8 0.165
5 17 0.359 13 10 0.228 21 19 0.165
6 1 0.348 14 13 0.223 22 14 0.141
7 18 0.337 15 15 0.218 23 12 0.129
8 5 0.334 16 11 0.207 24 16 0.117

Table 5.The values of the Cook statistic

No. D, No. D; No. D; No. D; No. D; No. D;

12 0.000 23 0.002 14 0.004 20 0.014 1 0.044 15 0.097
18 0.000 16 0.003 6 0004 9 0.034 3 0.059 24 0.157
19 0.000 11 0.003 10 0.005 17 0.035 13 0.069 7 0.830
21 0.001 22 0003 4 0006 8 0037 5 008 2 1544

It was finally determined, based on analysis ofgtractural parameters of the
regression model and the Cook measure (threshblé @al) that the influential
cases are contained in the set¥\{2, 7, 15, 24}.

Table 6.The influential cases

AT S C InP E InyY
No. Date — — ~— - - - -

X1 X2 Xz X4 Xs X y
2 22/06 1 1 27 37916.355 1 17.826
7 09/07 0 18 1.3 4.6 14.9371 15.363
15 29/07 1 38 205 7 1418 1 18.591

24 12/09 0 83 4.65 7.4 143341 14.845

Analysis of the 1-cut models distinguished the kgngfluential cases 2, 7,
15, 24. For possible detection of masking, wealgniamplifying and
conserving effects, the sequence of observatiorengearlier was extended to
the 9 observations with the numbers 1, 2, 3, 8,75, 17 and 24 based on
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detailed analysis of 1-cut models taking account-8tudent statistics with
values higher than for the full model. For eacl86fpairs of observations the
Cook statistics were determined in a 2-cut modeaniples of their values for
the first case with the remaining ones are givenhahble 7.

Table 7.The Cook statistics determined in a 2-cut modetHterfirst case with the
remaining ones are given

1 2 3 4 5 6 7 8
[ 1 1 1 1 1 1 1 1
J 2 3 5 7 9 15 17 24

hi 0.138 0.126 -0.074 0.138 0.120 -0.003 0.157 -0.043
h; 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348
h 0852 0.438 0.334 0.327 0.179 0.218 0.359 0.418
r 0.472 0472 0.472 0.472 0472 0472 0472 0472
r -0.404 -0.419 -0.686 -2.181 0.726 1.064 0.165 -0.725

D; 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
D; 1544 0.059 0.086 0.830 0.034 0.097 0.085 0.157
d; 0077 0.350 0429 0420 0521 0510 0.393 0.378
B, 2472 0113 0.133 0.955 0.082 0.142 0.090 0.203
B, 0408 0.020 0.008 0.215 0.016 0.000 0.016 0.004
B; -1.548 -0.084 0.056 -0.353 0.070 -0.002 0.034 0.043

Dgy 1.332 0.048 0.197 0.817 0.168 0.139 0.140 0.250
r’ri -0.191 -0.198 -0.324 -1.030 0.343 0.503 0.078 -0.342

Depending on the values of the Cook statisticgHerl-cut model and 2-cut

models, one can distinguish four types of obseouati

« amplifying— one or both of the statistics, D, are less than ;: (1, 5),
1, 9), (1, 15), (1, 17), (1, 24), (2, 5), (2, 1@, 24), (3, 5), (3, 9), (3, 15),
(5,9), (5, 15), (5, 17), (5, 24), (9, 24), (15),1@5, 24) and (17, 24),

» weakening- one or both of the Cook statistics for 1-cut nie@ge greater
than the Cook statistic for the 2-cut model: (1,(2) 7), (2, 9), (5, 7), (H),
(7, 24) and (9, 24),

e conserving- both Cook statistics for 1-cut models are alnemptal to the
Cook statistic for the 2-cut model: (1,3), (2,3, 15), (3, 7), (3, 17), (3,
24), (7, 17) and (9, 17),



Investigation of vectors of influential observatson 97

» attracting— one of the Cook statistics for the 1-cut modehvarge values
and the other with smaller values lead to largeieslof the Cook statistics
for the 2-cut model, e.g. pair (1,7).

In each of the situations listed, the changesttia place between the Cook
statistic values for the 1-cut and 2-cut modelsara different order. In this
meaning all pairs with small values for the stati€); ; should be omitted.
Adopting an arbitrary threshold value for that istat, equal to 0.5, there will
remain for consideration the system of pairs (1,(2)7), (2, 3), (2, 5), (2, 7),
(2,9), (2, 15), (2, 17), (2, 24), (3,5), (3, B, 7), (7, 9), (7, 15), (7, 17) and
(7, 24). Among these, based on the principle foregtigating pairs of
influential observations as given after formula (B)e pairs can be identified as
influential: (2, 5), (2, 17), (2, 24), (3, 5) and, 7). Among these pairs, cases
2,3,5,7,17 and 24 are distinguished.

In order to recognize the consequences of the emdast of the listed
observations in 2-cut models, regression analysés \performed for 15
distinguished 2-cut models containing the pairs8j2(2, 5), (2, 7), ..., (17, 24).

In the analysis of 2-cut models, large values vetatained for the statistic F
after cutting of the following pairs: (2, 7) — F14.599, (3, 7) — F = 11.301,
(5, 7) — F = 12.668. To the selected pair withhighest F there was added one
case at a time from the others listed, leadingaositleration of three 3-cut
models with the cases (2, 3, 7), (2, 5, 7) and’(24). For each of these three
triples, regression analysis of the 3-cut model gased out.

» The greatest value of F (17.0432) was obtainethitriple of observations
2, 5 and 7, and the smallest (1.808) for the triggl®@bservations 2, 3 and
24.

* Small values of the statistic F were obtained fer triples of observations
(2,3,5), (2,3, 24), (2,5, 24) and (3, 5, 24).

e Apart from the situations listed in (ii), in themmaining 3-cut models
significance at the level 0.05 was found for thetdiees A, T, S, In_P.

* Only for one triple (3, 5, 7) was feature C foundoe significant alongside
A, T,SandInP.
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In all of the given 3-cut models feature E proved¢ insignificant.

In summary, it can be concluded that:

» the single influential observations are found twbservations 2, 7 and 24,

» the influential pairs of observations are found&o(2, 7), (3, 7), (5, 7) and
(7, 24),

o for distinguished 3-cut models, the best fit is fduto be the linear

regression model excluding observations 2, 5 and 7.

4. Conclusions

This work has presented diagnostic procedures dsednvestigating
vectors of influential observations in a linearresgion model. They lead to the
identification of systems of observations which emasidered to be influential.
Of particular interest are those which contain sashich were not previously
considered influential in analysis of the 1-cut mlod he reverse situation may
occur, where a given system of submatrices is daghas influential, although
after the addition of new observations to thosarathices it transpires that the
new system of enlarged submatrices is no longerdegl as influential.

The method presented for sequential determinabbnm-element
vectors of influential observations is a proposestpdure when considering the
problem of investigation of influential observatson
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