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SUMMARY  

The procedures presented in this work lead to the identification of reasons for the poor 
fit of a mathematical model. Investigation of vectors of influential observations in a 
linear regression model leads to the identification of systems of observations regarded as 
influential. Particularly interesting are those which contain cases which were previously 
not regarded as influential in the analysis of a full model or 1-cut model. 
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1. Introduction 

In the analysis of a linear regression model by the least-squares method, an 

important issue is the qualitative evaluation of the model. This refers to 

estimators of the structural parameters and random component, as well as to 

various test statistics. These may depend directly on one or more vector 

observations of the dependent variable and the system of independent variables.  

 In this work we present concepts relating to an m-cut linear regression 

model, as well as a study of a distinguished system of m observations 

influencing the evaluation of the regression model. The concept of a vector of 

influential observations is defined, and influential observations in an m-cut 

model are discussed, along with the phenomenon of masking. Particular 

attention is paid to Cook’s distance measure as a criterion for diagnostic 

analysis of the influence of vector observations on the quality of statistics used 
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to evaluate the regression model. The procedure for discovering influential 

observations is illustrated with a numerical example. 

2.  Material and methods 

2.1. Concepts and denotations in an m-cut linear regression model 

Let there be given a linear regression model 

eXβy +=  

where y : n × 1 is a vector of observations of the dependent variable, X : n × p 

a matrix of observations of p - 1 independent variables whose first column 

corresponds to the vector of ones, 1: ×pβ  a vector of structural parameters, and 

e : n × 1 a vector of random errors ( 0e =)(E , Ie 2)( σ=D ). 

Let yGXβ
'ˆ =  be an estimator of the vector of structural parameters, 

obtained by the least-squares method, where ( ) 1' −= XXG , 'XGXH = : n × n is 

an orthogonal projection matrix, and )()(ˆ '2 pn −−= yHIyσ is an estimator of 

the parameter 2σ of the variance of the components of the vector of random 

errors. 

In order to investigate whether a system of m observations is influential, we 

introduce the symbol I to denote a subset of m numbers from the set {1,2,…, n}, 

)( IX :(n - m) × p is an m-cut matrix, lacking the subset I of observations from 

matrix X, IX : m × p is the matrix of the distinguished system of m observations 

from matrix X, [ ]'''
)( II XXX =  is a block division of matrix X into the 

indicated submatrices,  [ ]'''
)( II yyy = is a division of vector y into subvectors 

)( Iy :(n - m) × 1 and Iy : m × 1 according to the division of matrix X, 

{ IβXy 2
)()()( ,, σIII } is an m-cut linear regression model, where )( Iβ does not 

denote a cut of the vector of structural parameters, but emphasizes that the 

p-dimensional vector of parameters β  is estimated from an m-cut model, 

,)(ˆˆ 1
)( IIII rHIGXββ

−−−= : p × 1 is a least-squares estimator of vector β  from 

the m-cut model, where IH = mmII ×:GXX  and βXyr ˆ
III −=  (Budka and 

Wagner, 2007). 
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2.2. Determination of vectors of influential observations 

The least-squares estimators of the vector of structural parameters β̂  and the 

variance of random errors 2σ̂ , or functions of them, may reveal unfavourable 

properties of the adopted model, whereby it is poorly fitted to the observations. 

This will be expressed, for example, in high values of the standard deviations 

which are used to build various test statistics to verify hypotheses in parametric 

statistical inference, and also to construct confidence intervals (see e.g. Draper 

and Smith 1973, Oktaba, 1986, Ostasiewicz, 1999). By removing any influential 

or divergent observations, we improve the fit of the model to the observations. 

However rejection of observations cannot be done mechanically – it requires 

critical consideration of the structure of the numerical data in terms of the 

occurrence of any atypical observations, which may appear in the direction of 

the X axis (among the components of the row vectors of matrix X) or in the 

direction of the Y axis (among the components of the observable vector y). 

In both situations the problem relates to a single or multiple vectors of 

observations. In linear regression analysis this issue is known as occurrence of 

influential observations, since these have a direct influence on the analysed 

numerical characteristics of the regression model.  

To define formally the vector of influential observations, we denote 

a sample of n (p+1) - dimensional observations in the form of a sequence  

of row vectors of matrix X and components of vector y: 

 )),(),...,,(),,((),( ''
2

'
21

'
1 nn yyy xxxyXZ ==  );,(( '

ii yx= i= 1, 2, ..., n)’ 1+= p
nP , 

where 1'' ),( +∈ p
ii Ryx  

Definition  : In a linear regression model, the vector of observa-

tions ''' )),(),...,,((
11 mm iiii yy xx in a sample 1+p

nP , indexed by a distinguished set of 

m indicators ⊂},...,,{ 21 miii },...,2,1{ n , is called a vector of influential 

observations if its components significantly change the values of the analysed 

numerical characteristics in that model. 

The definition given implies the existence of at most 1])!(![! −− mnmn  

influential vectors, and this is also the number of m-cut regression models. For 

each of them one can determine a least-squares estimator for the vector of 
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parameters and variance of errors. This procedure is inefficient in practice when 

n and m are large. Moreover the estimators obtained are not always acceptable 

to the researcher, which fact may indicate the occurrence of influential 

observations. For such a situation a principle of sequential procedure is 

proposed, which begins with analysis of 1-cut linear regression models.  

2.3. Influential observations in an m-cut model 

We consider the case m = 1. Characteristics of such a model are discussed in, 

for example, (Besley et al., 1980), (Cook and Weisberg, 1982), (Chatterjee and 

Hadi, 1988), (Ostasiewicz, 1999), and (Budka and Wagner, 2007). 

In a 1-cut regression model diagnostic analysis is carried out on the effect of 

vector observations on the quality of the statistics of evaluation of the 

regression model. The criterion adopted for this analysis is the Cook distance, 

as a measure of influence, which can be expressed in the form: 

2

)(
''

)( )ˆˆ()ˆˆ(

ps
D ii

i

ββXXββ −−
=  = 

2

)(
'

)( )ˆˆ()ˆˆ(

ps
ii yyyy −−

 = 
p

wt ii ⋅2

,        (1) 

i = 1, 2, …, n, where 2s  is an estimator of the parameter 2σ ,  

i
ii

i
i h

r
Gxββ

−
−=

1
ˆˆ

)(   

an estimator of the vector of structural parameters in a 1-cut model, ir  is the i-th 

component of the vector of residuals yHIr )( −= , −iih  the i-th diagonal 

element of matrix H, βXy ˆˆ =  the estimated vector y from the full model, 

)()(
ˆˆ ii βXy =  the estimated vector y from the 1-cut model, 

1222 )1( −− −= iiii hsrt the square of the i-th internal studentized residual, and the 

sensitivity vector 1)1( −−= iiiii hhw the ratio of the variance of the i-th estimated 

variable to the residual. 

This measure makes it possible to distinguish a system of single vectors of 

influential observations. The threshold value for determination of influential 

observations based on the Cook distance is taken to be 4/(n-p-1) (Chatterjee and 

Hadi, 1988), (Belsley et el., 1980), (Fox, 2005). 
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We find that this system contains 1m  observations. This serves as a starting 

point for determining 2-dimensional, and from them 3-dimensional and so on 

up to m-dimensional, vectors of influential observations.  

We consider a case with m > 1. This is not an ordinary generalization of the 

1-cut model. This is because of the phenomenon of masking of observations, 

when the dataset may contain small subsets which are jointly influential, 

although each observation considered separately is not influential (observations 

C and D). The reverse may also be the case: observations A and B are 

individually influential, but are not so when considered jointly (Figure 1). 
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Figure 1. The effect of masking of observations 

A symptom of the masking effect may be that after the separation of one or 

more influential observations, other observations may appear as exceptionally 

influential, although this was not visible previously. Hence the significance of 

particular observations may not be revealed when other observations have been 

previously separated off. 

The problem of masking observations has been considered by many authors, 

including (Cook and Weisberg, 1980), (Gray and Ling, 1984), (Atkinson, 

1985), (Rousseeuw and Leroy, 1987), (Chatterjee and Hadi, 1988), (Lawrance, 

1995), and (Pena and Yohai, 1995). 

In investigating a system of m (p+1)-dimensional row vectors of influential 

observations, namely a certain m×(p+1)-dimensional submatrix separated off 

from the matrix (X, y), attention must be given to the problem – which 

frequently does not have a definitive answer – of how to establish the value 
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m=2, 3, ... Should one consider all systems of combinations of m observations 

from an n-element set? 

It should be noted that the main purpose of investigating distinguished 

submatrices is to find systems of observations that are considered influential. 

Important are those which contain cases previously not identified as influential 

in analysis of the 1-cut model. The reverse situation may occur, where a given 

system of submatrices was identified as influential, but on addition of new 

observations to those submatrices it transpires that the new system of enlarged 

submatrices is not longer considered influential. 

The measure of the influence of the Cook distance (1) for an m-cut model 

takes the form: 

2

)(
''

)( )ˆˆ()ˆˆ(

ps
D II

I

ββXXββ −−
=  = IIIII

ps
rHIHHIr 11'

2
)()(

1 −− −− , (2) 

The symbol I denotes m numbers of distinguished vector observations, 

namely the investigated submatrix of influential observations. 

Measure (2) for m=2 and a distinguished pair },{ jiI =  such that 

nji ≤<≤1  is expressed by the formula: 

321},{ BBBDD jiI ++== ,               (3) 

Where 

,1)(

22

1 












++=

ij

ij
ji d

h
DDB    

{ },)2()2(
2

22
22

2

2 iijjji
ij

ij hrhr
ds

h
B −+−= { },1

2

2 2
223 jjiiij
ij

ijji hhh
ds

hrr
B −+=  

ijh is the (i, j)-th element of matrix H, and 2)1)(1( ijjjiiij hhhd −−−=  (Gray and 

Ling, 1984). 

The formula given makes possible the following interpretation of the 

distinguished pair (i, j) of vector observations: 
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if ,0>ijh  if ,0<ijh  

B3 > 0, when 0rr ji >  

(jointly influential); 

B3 < 0, when 0>ji rr   

(not influential); 

B3 < 0, when 0rr ji <   

(not influential); 

B3>0, when .0<ji rr  

(jointly influential). 

 

Next we can consider, for pairs of observations, the amplification effect 

when one or both statistics Di, Dj are less than the statistic D{ i ,j} , the weakening 

effect when one or both Cook statistics for the 1-cut models are greater than the 

Cook statistics for the 2-cut model, the conserving effect when both Cook 

statistics in the 1-cut models are almost equal to the Cook statistic for the 2-cut 

model, and the attracting effect when one of the Cook statistics for a 1-cut 

model with large values, and the other with smaller values, lead to large values 

of the Cook statistic for the 2-cut model. 

In determining the vector of influential observations, attention must be paid 

to their character depending on the values of the diagonal elements of matrix H. 

These elements are expressed by vector values referring to the independent 

variables. This makes it possible to investigate the atypicality of vectors, 

expressed by their distance from a regression cluster (understood as a 

homogeneous set corresponding to a characteristic of the regression relation). In 

the case of a regression model with one independent variable, this corresponds 

to a configuration of points on a plane distributed around a certain straight line, 

whereas in the case of a multiple regression model such a configuration is a 

generalized ellipsoid with a hyperplane intersecting it.  

Definition  : Case observations, namely row vectors of matrix X corresponding 

to diagonal values of matrix H are called leverage points. 

The values of diagonal elements are contained in the interval 〈1/n, 1). Hence 

taking the a priori set threshold value 0h  for diagonal elements of the matrix H, 

one can distinguish among them the high-leverage points which exceed that 

value. It is these points that will chiefly interest us further, in terms of their 
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influence on the estimated linear regression model. Observations are considered 

to be leverage points if ( )nHtrh /][0 > . When 5.0≥iih  we have a high-leverage 

point. When 5.02.0 << iih  we have medium influence (a medium leverage 

value) (Belsley et al., 1980).  

The considered matrix H and the matrix *H  are matrices of orthogonal 

projection onto the space of columns of, respectively, the system matrix X and 

the extended system matrix Z = [X, y]. The diagonal elements of matrix *H  

take account of the simultaneous influence of the values of the independent 

features and the dependent feature in the linear regression model. Hence the 

leverage points of both matrices give slightly differing information about 

particular observations. It can be shown that the leverage values *iih  for the 

extended matrix of the system are the sum of leverage values iih  and the ratio 

of the square residuals 2ir  to the sum of square residuals .2∑= irSSE  The 

residuals r i will be large for the divergent observations. However it cannot be 

indicated directly which values hii and r i have a direct influence on the values 
*
iih . The following situations may occur here: 

 

Situation (a) indicates the occurrence of atypical observations among the 

dependent feature and several independent features. Situations (b) and (c) may 

lead to the inequality *
0

* hhii > , where *
0h  is a set threshold value (determined as 

0h ), and this will indicate an influential case. It should be noted that divergent 

observations need not be influential, influential observations need not be 

divergent, high-leverage points generally have small residuals, and influential 

observations correspond to non-proportional fit. Moreover divergent 

observations and high-leverage points need not be influential, and influential 

observations are not necessarily high-leverage points. 

             2
ir  

      hii 

Large Small 

Large (a) influential (b) possible influential 

Small (c)  possible influential (d) is not influential 
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∑=
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ij bb

bb ij
mq

2.3. The principle of sequential separation of influential observations 

We give here a principle of sequential procedure when separating off influential 

observations in linear regression models. Let L={1, 2, ..., n} be a set of n 

consecutive numbers corresponding to observations. 

The sequential principle includes the following steps: 

• identification of influential observations in a 1-cut model 

a. (aj ) – sequence of distinguished single influential observations from the 

set of all observations, 

b. j = 1, 2, ..., q1,  

c. L1 – set of q1 indices for distinguished observations; 

• identification of pairs of influential observations in a 2-cut model 

a. (aj, ai) – sequence of investigated pairs, where j ∈ L1, i ∈ L , and ,ji ≠  

b. in (i) for each aj there are identified 
jam influential pairs, influential 

                      pairs are established in total,  

c. (bj, bi) – selected influential pairs indexed by the set L2 of cardinality q2, 

d.  L2 = −),(),....,,(),,{(
222211 qq ijijij set of new indices of distinguished 

influential pairs, 

• identification of triples of influential observations in a 3-cut model 

a. (bj, bi , ak) – sequence of investigated triples, where k ∈ L, ,, jik ≠   

b. for each pair (bj, bi) there are distinguished 
ibjbm  influential triples, 

c.                          influential triples are determined in total,  

d. (cj, ci,, ck ) ∈ I3 – selected influential triples indexed by the set L3 of 

cardinality q3,   

e. L3 = )}.,,(),....,,,(),,,{(
333222111 qqq kijkijkij  

• the process can be continued for quadruples, quintuples etc. of influential 

observations. 

In each situation when specifying pairs, triples, quadruples etc. it is 

necessary to omit those which have already been identified at an earlier stage.  
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3. Research problem 

The discussed procedure for determining submatrices of influential observations 

will be illustrated using data taken from a meteorological experiment. The 

experiment was performed in 1975 in the United States under the name FACE 

(Florida Area Cumulus Experiment) (Woodley et al., 1977). It studied the 

relations between a dependent variable Ln_Y – the logarithm of the value of 

rainfall in the experimental area in a 6-hour interval after the first cloud seeding 

– for each of selected days in the 80-day duration of the experiment, and 

selected factors affecting the occurrence of rain: 

• A – binary feature (1 – introduced, 0 – not introduced) for introduction of 

volatile compound of silver iodide into clouds,  

• T – numbers of selected days in the period from 16/06–15/09 (1 – 16/06, 2 – 

17/06, …, 92 – 15/09),  

• S-Ne – seeding capability adjustment – difference between the height (km) 

of a rain cloud before and after seeding with silver iodide,  

• C – range echo – percentage coverage of the 3000-square-mile experimental 

area by clouds,  

• Ln_P – natural logarithm of value of total precipitation on the experimental 

area an hour before seeding [m3 x 107],  

• E – qualitative feature – radar echo (1 – mobile, 2 – stationary radar) (Cook 

and Weisberg, 1980). 

The data include n = 24 vector observations for p+1= 7 features. The 

estimated linear regression model and calculated statistics – multiple correlation 

coefficient, adjusted multiple determination coefficient, standard deviation of 

random error evaluation, Fisher-Snedecor test statistic, probability of rejection 

of zero hypothesis – took the form: 

,xxxxxxy 654321 627.0311.0013.0223.00154.0726.0898.12ˆ ++−−−+=

,035.0~   ,991.2   ,769.0   %,2.34
~

   ,717.0 ===== FpFsDR  
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The standard deviations of evaluations of structural parameters and the 

probability of rejection of zero hypotheses concerning structural parameters are 

recorded in Table 1. 

 
Table 1. The standard deviations of evaluations of structural parameters and jp~ -value 

j 0 1 2 3 4 5 6 

( )jD β̂  3.392 0.340 0.008 0.219 0.028 0.228 0.430 

jp~  0.001 0.047 0.070 0.323 0.636 0.190 0.164 
 

The calculations show that: 

• the multiple correlation coefficient is moderately high (0.717),  

• the standard error evaluation value is high (0.769),  

• the estimated linear regression model is significant for the adopted 

significance level of 0.05 

• significance at level 0.05 was found only for feature A, while at a 

significance level of 0.1 only the two features A and T can be considered 

significant, 

• features A, ln_P and E have a positive influence on the dependent variable, 

while the others have a negative influence, 

• the residuals, in increasing order, together with the observation numbers, 

are given in Table 2. 

• high absolute values of residuals are found for observations 7 (-2.1808) and 

15 (1.0642).  
 

Table 2. The residuals together with the observation numbers 

Obs. Res. Obs. Res. Obs. Res. Obs. Res. Obs. Res. Obs. Res. 
7 -2.181 17 -0.408 23 -0.141 6 0.071 16 0.274 9 0.726 
24 -0.725 2 -0.404 19 -0.075 21 0.117 20 0.283 8 0.803 
5 -0.686 22 -0.213 12 -0.046 10 0.236 14 0.306 13 0.876 
3 -0.419 11 -0.200 18 0.023 4 0.244 1 0.472 15 1.064 
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Based on the descriptive analysis of continuous variables (with particular 

attention to the smallest and largest residuals) the first set of potential influential 

observations W1={1, 2, 3, 5, 6, 7, 11, 13, 15, 24} was identified. Alongside the 

given set W1, we consider a new set of influential observations determined 

using analysis of leverage points, namely the diagonal elements of matrix H. 

Their values, in non-increasing order, are recorded in Table 3. 

 
Table 3. The diagonal elements of matrix H  

No. Obs. hii  No. Obs. hii  No. Obs. hii  
1 2 0.852 9 7 0.327 17 21 0.199 
2 6 0.596 10 20 0.322 18 22 0.199 
3 3 0.438 11 23 0.258 19 9 0.179 
4 24 0.418 12 4 0.241 20 8 0.165 
5 17 0.359 13 10 0.228 21 19 0.165 
6 1 0.348 14 13 0.223 22 14 0.140 
7 18 0.337 15 15 0.218 23 12 0.129 
8 5 0.334 16 11 0.207 24 16 0.117 

 

Interpretation of leverage points:  

• leverage values are contained in the interval 〈0.117, 0.852〉, 

• the highest leverage value is found for case 2 (0.852),  

• high-leverage points exceeding the threshold value 0.292 (=7/24) determine 

a new set of influential observations: W2={ 1, 2, 3, 5, 6, 7, 17, 18, 20, 24}.  

On combining the two sets we obtain the set W1,2 = W1∪W2 = {1, 2, 3, 5, 6, 

7, 11, 13, 15, 17, 18, 20, 24}. The obtained set of observations is reduced by 

analysing the matrix *H . The diagonal points of that matrix are given in 

Table 4. 

Based on the values of the diagonal elements of matrix H *  ( 33.0*
0 =h ) and 

the differences | H – H * | the set W1,2 was reduced to W3 = {1, 2, 3, 5, 6, 7, 15, 

17, 18, 20, 24}. From the preliminary analysis 11 observations were finally 

distinguished. 

Reduction of the given set W3 was performed by diagnostic analysis of 1-

cut models. Detailed analyses are contained in (Budka, 2005). For our further 

needs, we give the calculated values of the Cook statistic. 
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Table 4. The diagonal elements of matrix *H  

No. i *
iih  No. i *

iih  No. i *
iih  

1 2 0.853 9 7 0.327 17 21 0.200 
2 6 0.596 10 20 0.322 18 22 0.199 
3 3 0.438 11 23 0.258 19 9 0.179 
4 24 0.418 12 4 0.241 20 8 0.165 
5 17 0.359 13 10 0.228 21 19 0.165 
6 1 0.348 14 13 0.223 22 14 0.141 
7 18 0.337 15 15 0.218 23 12 0.129 
8 5 0.334 16 11 0.207 24 16 0.117 

 

Table 5. The values of the Cook statistic 

 

It was finally determined, based on analysis of the structural parameters of the 

regression model and the Cook measure (threshold value 0.1) that the influential 

cases are contained in the set W4 = {2, 7, 15, 24}. 

 
 Table 6. The influential cases 

A T S C ln_P E ln_Y 
No. Date 

x1 x2 x3 x4 x5 x6 y 

2 22/06 1 1 2.7 37.9 16.355 1 17.826 

7 09/07 0 18 1.3 4.6 14.937 1 15.363 

15 29/07 1 38 2.05 7 14.18 1 18.591 

24 12/09 0 83 4.65 7.4 14.334 1 14.845 

 

Analysis of the 1-cut models distinguished the single influential cases 2, 7, 

15, 24. For possible detection of masking, weakening, amplifying and 

conserving effects, the sequence of observations given earlier was extended to 

the 9 observations with the numbers 1, 2, 3, 5, 7, 9, 15, 17 and 24 based on 

No. Di No. Di No. Di No. Di No. Di No. Di 

12 0.000 23 0.002 14 0.004 20 0.014 1 0.044 15 0.097 
18 0.000 16 0.003 6 0.004 9 0.034 3 0.059 24 0.157 
19 0.000 11 0.003 10 0.005 17 0.035 13 0.069 7 0.830 
21 0.001 22 0.003 4 0.006 8 0.037 5 0.086 2 1.544 
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detailed analysis of 1-cut models taking account of t-Student statistics with 

values higher than for the full model. For each of 36 pairs of observations the 

Cook statistics were determined in a 2-cut model. Examples of their values for 

the first case with the remaining ones are given in Table 7. 

 
Table 7. The Cook statistics determined in a 2-cut model for the first case with the 

remaining ones are given 

 1 2 3 4 5 6 7 8 

i 1 1 1 1 1 1 1 1 
J 2 3 5 7 9 15 17 24 
hii 0.138 0.126 -0.074 0.138 0.120 -0.003 0.157 -0.043 
hjj 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 
hij 0.852 0.438 0.334 0.327 0.179 0.218 0.359 0.418 
ri 0.472 0.472 0.472 0.472 0.472 0.472 0.472 0.472 
rj -0.404 -0.419 -0.686 -2.181 0.726 1.064 0.165 -0.725 
Di 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 
Dj 1.544 0.059 0.086 0.830 0.034 0.097 0.035 0.157 
dij 0.077 0.350 0.429 0.420 0.521 0.510 0.393 0.378 
B1 2.472 0.113 0.133 0.955 0.082 0.142 0.090 0.203 
B2 0.408 0.020 0.008 0.215 0.016 0.000 0.016 0.004 
B3 -1.548 -0.084 0.056 -0.353 0.070 -0.002 0.034 0.043 

D{i,j} 1.332 0.048 0.197 0.817 0.168 0.139 0.140 0.250 
ri*r j -0.191 -0.198 -0.324 -1.030 0.343 0.503 0.078 -0.342 

 

Depending on the values of the Cook statistics for the 1-cut model and 2-cut 

models, one can distinguish four types of observations: 

• amplifying – one or both of the statistics Di, Dj are less than D{i, j} : (1, 5),  

(1, 9), (1, 15), (1, 17), (1, 24), (2, 5), (2, 17), (2, 24), (3, 5), (3, 9), (3, 15),  

(5, 9), (5, 15), (5, 17), (5, 24), (9, 24), (15, 17), (15, 24) and (17, 24), 

• weakening – one or both of the Cook statistics for 1-cut models are greater 

than the Cook statistic for the 2-cut model: (1, 2), (2, 7), (2, 9), (5, 7), (7, 5), 

(7, 24) and (9, 24), 

• conserving – both Cook statistics for 1-cut models are almost equal to the 

Cook statistic for the 2-cut model: (1,3), (2,3), (2, 15), (3, 7), (3, 17), (3, 

24), (7, 17) and (9, 17), 
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• attracting – one of the Cook statistics for the 1-cut model with large values 

and the other with smaller values lead to large values of the Cook statistics 

for the 2-cut model, e.g. pair (1,7). 

In each of the situations listed, the changes that take place between the Cook 

statistic values for the 1-cut and 2-cut models are of a different order. In this 

meaning all pairs with small values for the statistic D{i, j}  should be omitted. 

Adopting an arbitrary threshold value for that statistic, equal to 0.5, there will 

remain for consideration the system of pairs (1, 2), (1, 7), (2, 3), (2, 5), (2, 7), 

(2, 9), (2, 15), (2, 17), (2, 24), (3, 5), (3, 7), (5, 7), (7, 9), (7, 15), (7, 17) and  

(7, 24). Among these, based on the principle for investigating pairs of 

influential observations as given after formula (3), five pairs can be identified as 

influential: (2, 5), (2, 17), (2, 24), (3, 5) and (7, 17). Among these pairs, cases 

2, 3, 5, 7, 17 and 24 are distinguished.  

In order to recognize the consequences of the existence of the listed 

observations in 2-cut models, regression analysis was performed for 15 

distinguished 2-cut models containing the pairs (2, 3), (2, 5), (2, 7), …, (17, 24). 

In the analysis of 2-cut models, large values were obtained for the statistic F 

after cutting of the following pairs: (2, 7) – F = 14.599, (3, 7) – F = 11.301, 

(5, 7) – F = 12.668. To the selected pair with the highest F there was added one 

case at a time from the others listed, leading to consideration of three 3-cut 

models with the cases (2, 3, 7), (2, 5, 7) and (2, 7, 24). For each of these three 

triples, regression analysis of the 3-cut model was carried out.  
• The greatest value of F (17.0432) was obtained for the triple of observations 

2, 5 and 7, and the smallest (1.808) for the triple of observations 2, 3 and 

24. 

• Small values of the statistic F were obtained for the triples of observations 

(2, 3, 5), (2, 3, 24), (2, 5, 24) and (3, 5, 24). 

• Apart from the situations listed in (ii), in the remaining 3-cut models 

significance at the level 0.05 was found for the features A, T, S, ln_P. 

• Only for one triple (3, 5, 7) was feature C found to be significant alongside 

A, T, S and ln P. 
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• In all of the given 3-cut models feature E proved to be insignificant.  

In summary, it can be concluded that: 

• the single influential observations are found to be observations 2, 7 and 24, 

• the influential pairs of observations are found to be (2, 7), (3, 7), (5, 7) and  

(7, 24),  

• for distinguished 3-cut models, the best fit is found to be the linear 

regression model excluding observations 2, 5 and 7. 

4. Conclusions 

This work has presented diagnostic procedures used for investigating 

vectors of influential observations in a linear regression model. They lead to the 

identification of systems of observations which are considered to be influential. 

Of particular interest are those which contain cases which were not previously 

considered influential in analysis of the 1-cut model. The reverse situation may 

occur, where a given system of submatrices is regarded as influential, although 

after the addition of new observations to those submatrices it transpires that the 

new system of enlarged submatrices is no longer regarded as influential. 

 The method presented for sequential determination of m-element 

vectors of influential observations is a proposed procedure when considering the 

problem of investigation of influential observations. 
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